Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38335076

RESUMO

Visual guided motor imagery (MI) is commonly used in stroke rehabilitation, eliciting event-related desynchronization (ERD) in EEG. Previous studies found that immersion level and visuo-tactile stimulation could modulate ERD during visual guided MI, and both of two factors could also improve sense of ownership (SOO) over target limb (or body). Additionally, the relationship was also reported between the performance of MI and SOO. This study aims to investigate whether immersion and visuo-tactile stimulation affect visual guided MI through the SOO over virtual body in stroke patients. Nineteen stroke patients were recruited. The experiment included two phases (i.e., SOO induction and visual guided MI with SOO) that was manipulated across four conditions in a within-subject design: 2×2 , i.e., immersion (VR, 2D monitor display) × multisensory stimulation (visuo-tactile stimulation, observation without tactile stimulation). Results found peaks ERD amplitude during MI were significantly higher in stronger SOO conditions than weaker SOO conditions. Interestingly, the ERD during visual guided MI under the condition of vision only in VR and visuo-tactile stimulation in 2D monitor are similar, which indicates that SOO may be an important factor behind this phenomenon (due to the similar SOO between these two conditions). A moderate correlation was also found between SOO scores and peaks ERD amplitude during MI. This study discussed the possible factor underlying the effects of immersion and multisensory stimulation on visual guided MI in post-stroke patients, identifying the effect of SOO in this process, and could be referred in future studies for coming up with better MI paradigms for stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Imersão , Propriedade , Tato , Eletroencefalografia/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38349835

RESUMO

Virtual reality (VR)-based rehabilitation training holds great potential for post-stroke motor recovery. Existing VR-based motor imagery (MI) paradigms mostly focus on the first-person perspective, and the benefit of the third-person perspective (3PP) remains to be further exploited. The 3PP is advantageous for movements involving the back or those with a large range because of its field coverage. Some movements are easier to imagine from the 3PP. However, the 3PP training efficiency may be unsatisfactory, which may be attributed to the difficulty encountered when generating a strong sense of ownership (SOO). In this work, we attempt to enhance a visual-guided 3PP MI in stroke patients by eliciting the SOO over a virtual avatar with VR. We propose to achieve this by inducing the so-called out-of-body experience (OBE), which is a full-body illusion (FBI) that people misperceive a 3PP virtual body as his/her own (i.e., generating the SOO to the virtual body). Electroencephalography signals of 13 stroke patients are recorded while MI of the affected upper limb is being performed. The proposed paradigm is evaluated by comparing event-related desynchronization (ERD) with a control paradigm without FBI induction. The results show that the proposed paradigm leads to a significantly larger ERD during MI, indicating a bilateral activation pattern consistent with that in previous studies. In conclusion, 3PP MI can be enhanced in stroke patients by eliciting the SOO through induction of the "OBE" FBI. This study offers more possibilities for virtual rehabilitation in stroke patients and can further facilitate VR application in rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Masculino , Feminino , Propriedade , Eletroencefalografia , Extremidade Superior
3.
Conscious Cogn ; 115: 103578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738769

RESUMO

This paper attempts to induce the third-person perspective full body illusion (3PP-FBI) with virtual reality (VR) in stroke patients. Nineteen individuals with stroke were recruited. The 3PP-FBI induction method, which was well-established in healthy individuals, using synchronous visual-tactile stimulation on one body part was used. Questionnaire scores and proprioceptive drift values were collected under different conditions for characterizing the induced 3PP-FBI. Results showed that synchronous visual-tactile stimulation of a single body part (back or upper limb) was sufficient to elicit 3PP-FBI in stroke patients, forming a sense of ownership (SOO) over the entire virtual body. Moreover, the intensity of 3PP-FBI was stronger when the back was stimulated, compared to stimulating the impaired upper limb. This study demonstrated the viability of visual-guided rehabilitation training while having a SOO to a virtual body from the third-person perspective, in anticipation of achieving better rehabilitation outcome for movements beyond the first-person perspective.


Assuntos
Ilusões , Acidente Vascular Cerebral , Percepção do Tato , Realidade Virtual , Humanos , Ilusões/fisiologia , Tato , Percepção do Tato/fisiologia
4.
Ocul Surf ; 21: 206-220, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964410

RESUMO

PURPOSE: The corneal limbus maintains the homeostasis, immune and angiogenic privilege of cornea. This study aimed to depict the landscape of human limbal tissues by single-cell RNA sequencing (scRNA-seq). METHODS: Single cells of human limbus collected from donor corneas were subjected to 10x scRNA-seq, followed by clustering cell types through the t-distributed stochastic neighbor embedding (t-SNE) and unbiased computational informatic analysis. Immunofluorescent staining was performed using human corneas to validate the analysis results. RESULTS: 47,627 cells acquired from six human limbal tissues were collected and subjected to scRNA-seq. 14 distinct clusters were identified and 8 cell types were annotated with representative markers. In-depth dissection revealed three limbal epithelial cell subtypes and refined the X-Y-Z hypothesis of corneal epithelial maintenance. We further unveiled two cell states with higher stemness (TP63+ and CCL20+ cells), and two other differentiated cell states (GPHA2+ and KRT6B + cells) in homeostatic limbal stem/progenitor cells (LSPCs) that differ in transcriptional profiles. Cell-cell communication analysis revealed the central role of LSPCs and their bidirectional regulation with various niche cells. Moreover, comparative analysis between limbus and skin deciphered the pivotal contribution of limbal immune cells, vascular and lymphatic endothelial cells to corneal immune and angiogenic privilege. CONCLUSIONS: The human limbus atlas provided valuable resources and foundations for understanding corneal biology, disease and potential interventions.


Assuntos
Epitélio Corneano , Limbo da Córnea , Córnea , Células Endoteliais , Homeostase , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...